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COMPARISON OF SERIES AND FINITE DIFFERENCE SOLUTIONS
TO REMOTE TENSILE LOADINGS OF A PLATE HAVING

A LINEAR SLOT WITH ROUNDED ENDS

DAVID J. UNGER

Plane stress linear elastic solutions are obtained for a straight slot with rounded ends subject to remotely
applied tensile tractions. The series solutions are obtained using a Kolosov–Muskhhelishvili complex
variable approach together with an expansion technique developed extensively by G. N. Savin. The finite
difference solutions employ an orthogonal curvilinear coordinate system and simulate loads applied at
infinity using finite boundaries that are large in comparison to the slot length. The slot shape is similar
to the geometry found in the D. Riabouchinsky free streamline problem for fluid flow around two flat
plates. Both uniaxial loadings normal to the slot and uniform biaxial loadings are examined.

1. Introduction

The problems addressed in this paper are similar to mode I crack problems [Unger 2011] found in
linear elastic fracture mechanics. Unlike crack problems, the conformal mapping of a slot onto a unit
circle to facilitate solution involves the use of a transcendental function. However, the most powerful
analytical solution technique known for solving plane linear elastic problems limits the mapping function
to be at most a rational function of the mapping variable in order to guarantee solution [Muskhelishvili
1977]. The traditional way to avoid this problem is to use a power series expansion of an algebraic or
transcendental function in terms of the transformation variable of the mapping function [Savin 1961].
This is the technique employed here.

Once a proper conformal mapping function is identified, a numerical finite difference scheme can also
be formulated using the orthogonal curvilinear coordinates defined by the conformal mapping or one
that is closely related to it. However, use of a series expansion as a solution technique often generates
oscillatory behavior in the solution even after many terms of the expansion are retained including those
utilizing modern optimization techniques of the genetic-algorithm variety [Vigdergauz 2006]. This can
make the determination of the largest principal stress problematic and consequently the stress concen-
tration factor. The use of a finite difference solution scheme for comparison helps verify the maximum
value of the principal stress as numerical solutions of this type are not prone to oscillations.

A summary of classical stress concentration factors for holes of various types in plates for linear elastic
behavior may be found in the most currently revised edition of Peterson’s handbook [Pilkey et al. 2020].
A large compilation of stress concentration factor literature for analyses conducted after 1974 appears in
[Hardy and Malik 1992]. Another relatively recent reference on stress concentration factors is [Savruk
and Kazberuk 2017].
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One motivation for this analysis is that fracture mechanics specimens require a straight slot of finite
width be cut into a plate before a fatigue crack can be generated at the tip of the slot. The knowledge of
the stress concentration factor due to the slot itself helps quantify the overall state of stress into which
the crack propagates [Collins 1993; Rice 1988].

Typically, linear elastic solutions of slots of finite widths are often approximated by use of elongated
elliptical hole or parabolic notch analyses [Tada et al. 2000; Creager and Paris 1967]. Nevertheless, there
can be large discrepancies between the predictions of linear elastic solutions for elongated ellipses and
notches and those of finite-width slots. This can be readily discerned for a mode III slot problem of this
shape [Unger 2012a; 2012b], which has a closed-form solution, and those of an ellipse [Neuber 2001]
with a similar aspect ratio of semimajor to semiminor axes.

2. Series solution of the slot problem

The mapping function of a plane exterior to a slot geometry of the type shown in Figure 1 onto the
interior of a unit circle is [Unger 2016; 2018]

z = ω(ζ )=
a
2

{
−(1− k1)

1+ ζ 2

2ζ
+ sgn(Re ζ )[k1K (m)− E(m)]
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[
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(
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2

)
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F
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)]}
, (1)

where the various parameters of the elliptic integrals [Abramowitz and Stegun 1964] of (1) are defined
by

m = 1−m1, k1 =
√

m1, k2 =
2
√

k1

1+ k1
, 0≤ m1 ≤ 1 (2)

and a is a scaling parameter with units of length.
The aspect ratio AR of total slot length to the total slot width is [Unger 2016]

AR =
1−
√

m1(K (m)+ 1)+ E(m)
2[E(m1)− (1−

√
m1)K (m1)]

. (3)
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Figure 1. Variation of slot aspect ratio and shape with elliptic integral parameter.
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The curved tip at the right-hand side of the slot has the following parametric relationship [Unger 2019]
with θ in Cartesian coordinates z = x + iy:

xtip =
a
2
[(1− k1) cos θ − k1K (m)+ E(m)], −π

2
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2
,
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,

(4)
where θ is the angle of the polar representation of the transform variable ζ

ζ = ρ exp(iθ), 0≤ ρ ≤ 1, −π ≤ θ ≤ π, (5)

and where ρ is the radius.
This shape was first obtained in connection with the solution of the free streamlines of an ideal fluid

flowing past two side-by-side flat plates [Riabouchinsky 1921]. An analogy with the antiplane slot
problem was investigated in detail in [Unger 2018; 2019]. Note that the slot tip will actually change
shape slightly with m1 in Figure 1, but it does so almost imperceptibly for small changes in this parameter.
As m1→ 0, the slot tip shape approaches asymptotically that of a cycloid [Unger 2018]. This particular
shape was chosen for the slot as it provides a single analytical expression for a smooth transition from
its flat surfaces to its rounded ends. This is an important attribute when solving the problem analytically.
In contrast, the ovaloid, which is a slot shape composed of flat surfaces connected by semicircular ends,
requires two different meshes composed individually of Cartesian and polar coordinates for solution
[Bowie and Freese 1978].

Let us perform a series expansion of z(ζ ) of (1) about the point ζ equals zero retaining only the first
three terms of the series

z(ζ )=−
a

2ζ
+

a(3m1/2
1 − 1)ζ

2(m1/2
1 + 1)

+
2am1/2

1 (m1/2
1 − 1)2ζ 3

3(m1/2
1 + 1)3

+ · · · . (6)

Note that if one wishes to expand this series beyond the three terms shown, using the symbolic software
Mathematica, it may be easier to first differentiate z(ζ ) of (1) with respect to ζ and then expand the
derivative. This would be followed by integrating the resulting series of the derivative with respect to ζ
to obtain the series expansion of z(ζ ).

The symbol σ is traditionally used to represent ζ on the surface of the unit circle where ρ of (5) equals
one:

σ = exp(iθ). (7)

Similarly, z(ζ ) on the unit circle γ is traditionally represented by the symbol ω(σ) such that (6) becomes

ω(σ)=−
a

2σ
+

a(3m1/2
1 − 1)σ

2(m1/2
1 + 1)

+
2am1/2

1 (m1/2
1 − 1)2σ 3

3(m1/2
1 + 1)3

+ · · · . (8)

Now one of the complex functions that is used in a Muskhelishvili solution scheme is a function desig-
nated as ϕ(ζ ). Following the series expansion technique developed in [Savin 1961], one decomposes the
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function ϕ(ζ ) for a remote tensile traction T∞ applied along a single axis by

ϕ(ζ )= T∞ z(ζ )/4+ϕ0(ζ ), (9)

where the following integral equation must be solved:

ϕ0(ζ )+
1

2π i

∫
γ

ω(σ)

ω′(σ )
ϕ′0(σ )

dσ
σ − ζ

=
1

2π i

∫
γ

( f 0
1 + i f 0

2 )
dσ
σ − ζ

. (10)

The bar above a variable in (10) represents the complex conjugate of a related function without the bar.
Part of the integrand on the right-hand side of (10) is given by

f 0
1 + i f 0

2 =−
T∞
2
[ω(σ)− exp(2iα)ω(σ)], (11)

where α represents an angle in the direction of the applied traction at infinity T∞. Now the complex
conjugate of z(ζ ) is given by

z̄(ζ̄ )=−
a
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+
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1 (m1/2
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+ · · · , (12)

where
ζ̄ = ρ exp(−iθ), 0≤ ρ ≤ 1, −π ≤ θ ≤ π. (13)

Consequently, from (12) one infers on the slot boundary

ω(σ)=−
a
2
σ +

a(3m1/2
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2(m1/2
1 + 1)σ

+
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1 (m1/2
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+ · · · (14)

as σ̄ = 1/σ . Taking the first derivative of (12) with respect to ζ̄ produces

z̄′(ζ̄ )=
a

2ζ̄ 2
+

a(3m1/2
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2(m1/2
1 + 1)

+
2am1/2
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Because σ̄ = 1/σ , z̄′(ζ̄ ) may be rewritten on the unit circle γ as

ω′(σ )=
a
2
σ 2
+

a(3m1/2
1 − 1)

2(1+m1/2
1 )
+

2am1/2
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Let us now expand the function ϕ0 of (9) in a power series in ζ of the form

ϕ0(ζ )= (b1+ ic1)ζ + (b3+ ic3)ζ
3
+ · · · , (17)

where the various coefficients of the ζ expansion (b1, c1, b3, c3) are assumed to be real variables. On the
unit circle γ , ϕ0(ζ ) becomes

ϕ0(σ )= (b1+ ic1)σ + (b3+ ic3)σ
3
+ · · · . (18)

Similarly, the complex conjugate of (17) is

ϕ̄0(ζ̄ )= (b1− ic1)ζ̄ + (b3− ic3)ζ̄
3
+ · · · , (19)
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with its first derivative being

ϕ̄′0(ζ̄ )= (b1− ic1)+ 3(b3− ic3)ζ̄
2
+ · · · . (20)

On the unit circle boundary γ , ϕ̄′0(ζ̄ ) becomes

ϕ′0(σ )= (b1− ic1)+
3(b3− ic3)

σ 2 + · · · . (21)

The integrals of (10) can be evaluated using residue theory as all of the singularities that appear in the
integrand are either simple or multiple poles.

The evaluation [Churchill 1960; Spiegel 1964] of an arbitrary integral in the complex plane having a
single singularity at z = z0 is ∫

γ

f (z) dz = 2π ia−1, (22)

where a−1 is the residue at z = z0. If multiple singularities arise within the unit circle γ , then the
residue a−1 in (22) is simply replaced by the sum of the residues. It is assumed that the integral in (22)
has no branch points. The residue a−1 can be determined for a simple pole by the following limit

a−1 = lim
z→z0

(z− z0) f (z). (23)

If a higher order pole exists at z = z0, then the following alternative to (23) can be used

a−1 = lim
z→z0

1
(n− 1)!

dn−1

dzn−1 [(z− z0)
n f (z)], n ≥ 2, (24)

where n is the order of the pole.
The residues of the integral on the left-hand side of (10) are evaluated at σ = 0 and σ = ζ , as

singularities exist there. In addition, residues are determined at the four roots of the following quartic
equation in σ :

σ 4
+
−1+ 3m1/2

1

1+m1/2
1

σ 2
+

4m1/2
1 (−1+m1/2

1 )2

(1+m1/2
1 )3

= 0, (25)

which are explicitly
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1
√

2

√√√√√−3+
4

1+m1/2
1

±

√
1− 7m1/2

1 (3− 5m1/2
1 +m1)

(1+m1/2
1 )3/2

. (26)

The algebraic equation (25) is used to locate the roots of ω′(σ )= 0, which introduce singularities in the
integrand, and consequently require evaluation using residue theory. All four of the roots (26) fall within
the complex unit circle γ for 0≤ m1 ≤ 1, which is a necessary condition from residue theory for their
inclusion in the evaluation.

The result of the evaluation of this integral by residue theory is

1
2π i

∫
γ

ω(σ)

ω′(σ )
ϕ′0(σ )

dσ
σ − ζ

=
4(b1− ic1)m

1/2
1 (−1+m1/2

1 )2ζ

3(1+m1/2
1 )3

. (27)
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The subroutine for symbolic residue evaluation in Mathematica was used for determining the integral (27)
in this example. Note that when numerical iteration is used for determining roots instead of an analytical
expression, relationships (23) and (24) may have to be employed to determine the residues.

Similarly, the integral on the right-hand side of (10) requires residue evaluation at σ = 0 and σ = ζ
producing the result

1
2π i

∫
γ

( f 0
1 + i f 0

2 )
dσ
σ − ζ

=−
T∞aζ [−3+ 3e2ia(1+m1/2

1 )3+m1/2
1 [3+ 15m1/2

1 + 9m1+ 4(−1+m1/2
1 )2ζ 2

]]

12(1+m1/2
1 )3

. (28)

By substituting (17), (27), and (28) into (10), one finds a relationship for determining the coefficients of
the expansion of ϕ0(ζ )

aT∞ζ
[
−3+ 3e2iα(1+m1/2

1 )3+m1/2
1 [3+ 15m1/2

1 + 9m1+ 4(m1/2
1 − 1)2ζ 2

]
]

+ 12(1+m1/2
1 )3[(b1+ ic1)ζ + (b3+ ic3)ζ

3
] + 16(b1− ic1)m

1/2
1 (m1/2

1 − 1)2ζ = 0. (29)

By setting the real and imaginary parts of the coefficients on ζ and ζ 3 individually equal to zero in (29),
one determines the coefficients of the series as

b1 = 3aT∞(1+m1/2
1 )2

[
1− 3m1/2

1 − (1+m1/2
1 ) cos 2α

4(3+ 13m1/2
1 +m1+ 7m3/2

1 )

]
, (30)

c1 =
3aT∞(1+m1/2

1 )3 sin 2α

4(−3− 5m1/2
1 − 17m1+m3/2

1 )
, (31)

b3 =−
aT∞(−1+m1/2

1 )2 m1/2
1

3(1+m1/2
1 )3

, c3 = 0. (32)

Now, a relationship established in [Muskhelishvili 1977] is

σρ + σθ = 4 Re
[
ϕ′(ζ )

z′(ζ )

]
, (33)

where σρ and σθ are normal stresses in the ρ and θ directions. On the slot boundary, which is traction
free, σρ is zero so that (33) becomes [Savin 1961]

σθ (σ )= 4 Re
[
ϕ′(σ )

ω′(σ )

]
. (34)

From (34) the stress concentration factor may be determined as the maximum principal stress will always
be located on the surface of the slot.

This analysis is provided here only to demonstrate the basic technique used to generate the curves
shown in Figures 2 and 3, whose analyses contain many more terms of ζ than the series (6). The
series (6) was truncated after only three terms, as even a single additional term in the form of a fifth
power of ζ would greatly increase the length of the solution presented for an arbitrary value of m1.
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Figure 2. Stress distribution along slot surface under uniaxial loading for various slot
aspect ratios (3).

All of the curves shown in Figures 2 and 3 were generated with expansions containing odd powers
of ζ up to the twenty-third power using specific values of m1. Two exceptions are also shown for the
case m1 = 0.02, where ζ was expanded only up to the twenty-first power.

The extreme length of these solutions preclude their being published in their entirety. Also note that
finding roots of σ where singularities occur in the integrands often require numerical iteration for specific
rather than arbitrary values of m1. This was avoidable in the simple case of (25) because an analytical
solution for the roots is possible (26) for arbitrary m1. One must find all of the roots within the integrand
of the integrals in (10) provided that the roots fall within the unit circle γ . This is necessary in order to
evaluate the integrals in (10) using residue theory.

It is the curves showing oscillatory behavior in Figures 2 and 3 that were generated with this series ex-
pansion technique. The curves of Figure 2 were produced by taking α = π/2, in (11), which corresponds
to the direction of the remote tensile load T∞ in the y-direction. The curves in Figure 3 were produced
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Figure 3. Stress distribution along slot surface under biaxial loading for various slot
aspect ratios (3).

by superposing a solution with α = π/2 to one with α = 0 to simulate a uniform biaxial loading T∞ of
the plate at infinity.

The remaining curves of Figures 2 and 3 showing numerical data points joined by continuous curves
were obtained from finite differences solutions, whose details are discussed in the following section.

3. Finite difference solutions of the slot problem

The isotropic plane stress linear elastic slot solution is determined in this section by finding an appropriate
Airy stress function numerically. An Airy function φ = φ(x, y) must solve the following fourth order
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Figure 5. Sum of in-plane normal stresses ψ for biaxial loading.

partial differential equation, which is referred to as the biharmonic equation [Malvern 1969]

∇
4φ =∇4φ(x, y)=

∂4φ(x, y)
∂x4 + 2

∂4φ(x, y)
∂x2 ∂y2 +

∂4φ(x, y)
∂y4 = 0. (35)

Equation (35) is valid provided that no body forces are present. The properties of the operator ∇4 in (35)
allow the biharmonic equation to be decomposed as

∇
4φ = 0H⇒∇2(∇2φ)= 0H⇒∇2ψ = 0 for ψ =∇2φ, (36)

where the Laplacian operator ∇2 is defined in Cartesian coordinates (x, y) by

∇
2( )=

∂2( )

∂x2 +
∂2( )

∂y2 . (37)
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Figure 6. Curvilinear orthogonal coordinate system (u, v) of the slot problem.

The function ψ in (36) is referred to as a harmonic function indicating that it solves Laplace’s equation

∇
2ψ = 0. (38)

By (36) the Airy function may also be thought of as solving Poisson’s equation

∇
2φ = ψ. (39)

Hence, a solution of the biharmonic equation may be decomposed into solving two second order partial
differential equations simultaneously, (38) and (39), as noted previously in [Greenspan 1974].

The use of an orthogonal curvilinear system that naturally accommodates the slot geometry will greatly
simplify the application of boundary conditions to the governing equation. A coordinate system closely
related to (1) will be used here. Let us introduce the following substitution for ζ in (1):

ζ =− exp(−w), where w = u+ iv, 0≤ u ≤∞, −π ≤ v ≤ π. (40)

A schematic drawing of this coordinate system (u, v) is shown in Figure 6 for the first quadrant of the
xy plane. As m1→ 0, the coordinates u and v of (40) approach standard elliptical coordinates, where
u is a family of confocal ellipses and v is a family of orthogonal hyperbolas. For a general value of m1,
the slot boundary is located at u = 0. On the slot boundary, the coordinate ρ = 1 so that v = π − θ , as
can be inferred from (5) and (40).
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In the coordinate system defined by w, Poisson’s equation (39) may be written as

∂2φ

∂u2 +
∂2φ

∂v2 = h2(u, v) ψ(u, v), (41)

where the metric coefficient h(u, v) in (41) can be determined using one of the following relationships:

h(u, v)=

√
dz
dw

dz̄
dw̄
=

√
Re2(dz/dw)+ Im2(dz/dw)=

∣∣∣∣ dz
dw

∣∣∣∣. (42)

Laplace’s equation (38) becomes in the new curvilinear system

∂2ψ

∂u2 +
∂2ψ

∂v2 = 0. (43)

A nine-point finite difference scheme for Poisson’s equation in [Rosser 1975], which also agrees with
one in [Collatz 1960], is chosen for solution of (41) for interior nodes (i, j):

φi, j =
1

20(φi−1, j+1+φi+1, j+1+φi−1, j−1+φi+1, j−1)+
1
5(φi, j+1+φi−1, j +φi+1, j +φi, j−1)

−
12

300
(82h2

i, jψi, j + h2
i−1, j+1ψi−1, j+1+ h2

i, j+1ψi, j+1+ h2
i+1, j+1ψi+1, j+1+ h2

i−1, jψi−1, j

+ h2
i+1, jψi+1, j + h2

i−1, j−1ψi−1, j−1+ h2
i, j−1ψi, j−1+ h2

i+1, j−1ψi+1, j−1), (44)

where 1 is the incremental change between adjacent nodes in the square mesh shown in Figure 4. The
indices of the mesh range from i = 1 to 181 and j = 1 to 91.

Similarly, an equivalent formulation for the discretization of Laplace’s equation (43) for interior nodes:

ψi, j =
1
5(ψi, j+1+ψi−1, j +ψi+1, j +ψi, j−1)+

1
20(ψi−1, j+1+ψi+1, j+1+ψi−1, j−1+ψi+1, j−1). (45)

Now the boundary condition for ψ along slot OC of Figure 6 must be derived. As the slot is traction free,
the following relationships may be imposed [Malvern 1969] to satisfy this boundary condition:

φ(0, v)=
∂φ

∂u

∣∣∣∣
u=0
= 0. (46)

As φ is constant along the slot by (46), the following relationships for partial derivatives of φ with respect
to v and a reduction of Poisson’s equation to an ordinary differential equation along the slot are deduced:

∂φ

∂v

∣∣∣∣
u=0
= 0−→

∂2φ

∂v2

∣∣∣∣
u=0
= 0−→

d2φ(0, v)
du2 = h2(0, v) ψ(0, v). (47)

Sixth order, forward, finite difference representations [Miller 1975] of partial derivatives of φ along the
slot boundary (i = 1) follow

∂φ

∂u

∣∣∣∣
1, j
= 0= 1

601
(−147φ1, j+360φ2, j−450φ3, j+400φ4, j−225φ5, j+72φ6, j−10φ7, j ),

∂2φ

∂u2

∣∣∣∣
1, j
=

1
18012 (812φ1, j−3132φ2, j+5265φ3, j−5080φ4, j+2970φ5, j−972φ6, j+137φ7, j ).

(48)
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In addition, from (46), one infers along the slot that

φ(0, v)= φ1, j = 0 for j = 1 to 91. (49)

From the ordinary differential equation in (47), combined with relationships (48) and (49), the discretized
value of ψ along the slot boundary is

ψ1, j =
10φ2, j − 5φ3, j + 2.2222φ4, j − 0.625φ5, j + 0.08φ6, j

h2
1, j1

2
, j 6= 1 or 91. (50)

Note that φ7, j was chosen for elimination between equations (48) in the derivation of (50).
Equations (49) and (50) constitute the boundary conditions on φ and ψ respectively along slot OC of

Figure 6 with the exception of the endpoints for ψ .
Other boundary conditions that must be satisfied along sides OA and BC of Figure 6 are due to

symmetry

OA and BC:
∂φ

∂v
= 0,

∂ψ

∂v
= 0. (51)

The condition on φ defined by (51) was satisfied by employing simple forward and backward second
order finite difference equations

OA: φi,1 = (4φi,2−φi,3)/3, i 6= 1 or 181,

BC: φi,91 = (4φi,90−φi,89)/3, i 6= 1 or 181.
(52)

The second boundary condition of (51) on ψ was combined with second order finite difference represen-
tations for Laplace’s equation (43) in order to obtain the following relationships that are appropriate for
homogeneous Neumann boundary conditions [Li and Lam 1964]

OA: ψi,1 = (ψi−1,1+ψi+1,1+ 2ψi,2)/4, i 6= 1 or 181,

BC: ψi,91 = (ψi−1,91+ψi+1,91+ 2ψi,90)/4, i 6= 1 or 181.
(53)

Along the exterior boundary AB, which represents infinity, two different types of loadings were con-
sidered. The first was for a uniaxial loading T∞ in the direction of the y-axis (Figure 1). The second was
for a uniform biaxial loading in the x and y directions. In the specific cases, the following relationships
were used:

uniaxial loading on AB:
{
φ181, j = (T∞/2)x2

181, j

ψ181, j = T∞,
j = 1 to 91,

biaxial loading on AB:
{
φ181, j = (T∞/2)(x2

181, j + y2
181, j )

ψ181, j = 2T∞,
j = 1 to 91.

(54)

At the ends of the slot, points O and C respectively, second order finite difference representations of
Laplace’s equation were combined with second order finite difference equations of the second boundary
condition of (51) to obtain

ψ1,1 = ψ3,1+ 2ψ1,2− 2ψ2,1, ψ1,91 = ψ3,91+ 2ψ1,90− 2ψ2,91. (55)
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Figure 7. Airy stress function φ for biaxial loading.

A Jacobi iteration scheme [Akai 1994] was chosen to solve the governing equations for φ and ψ ,
(41) and (43) respectively, subject to boundary conditions (49), (50), (52)–(55). The value of the grid
increment 1 used in the finite difference analysis was π/180. The value of u varied from 0 to π in
the analysis, while the coordinate v varied from 0 to π/2. For u = π , there is approximately a one
degree variation in the angle v between adjacent nodes in the physical plane. Representative plots of
the solutions for ψ and φ for the biaxial loading case with m1 = 0.01 are shown in Figures 5 and 7,
respectively.

Note that

ψ = σx + σy = σu + σv, (56)

where σx , σy , σu , and σv are normal stresses in their respective directions, which are designated by
subscripts. On the slot boundary, σu is zero so that σv = ψ by (56).

The MATLAB software was used for the numerical analysis. Subroutines for the evaluations of elliptic
integrals for complex arguments were written by Igor Moiseev and downloaded from the MATHWORKS
file exchange.

The convergence of the numerical scheme for the stress concentration factor for the uniaxial case of
loading for a value of m1 = 0.01, representing an infinite boundary, is shown in Figure 8 as the outer
radius of the boundary R is increased. The value of R was calculated at the coordinate v = 0. It was
determined numerically that little variance occurred in Kt beyond the value u = π as indicated in the
figure. This value of R is also small enough to maintain numerical stability of the iterative process
as φ grows concurrently large. The mesh size itself was chosen to be fine enough to provide accurate
numerical results while at the same time minimizing computation time for convergence of the iterative
solution.
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Figure 8. Convergence of numerical solution for stress concentration factor as a func-
tion of outer boundary radius.

4. Comparison of solutions

The numerical data points for various values of m1 are shown in Figure 2 for a uniaxial tensile loading of
the slot and in Figure 3 for a biaxial tensile loading of the slot. When the maximum principal stresses are
plotted for the numerical data, fairly smooth curves connecting the data points are observed (Figure 9).
In contrast, a plot of the maximum principal stresses for the series solutions would exhibit significant
amounts of scatter in the data due to the oscillatory behavior of the solutions. On the other hand, there
is still a discernable qualitative agreement between the series and the finite difference solutions plotted
in Figures 2 and 3 along the slot surfaces. This fact lends additional support to the assumption that the
boundaries representing infinity in the finite difference solutions are sufficiently distant from the origin
that any additional length added to the existing boundary will have a negligible effect on the maximum
principal stress.

An exact stress concentration factor Kt exists for the antiplane or mode III slot problem of this shape
[Unger 2012a; 2012b; 2016; 2018; 2019]:

antiplane shear loading: Kt = τmax/τ∞ = 1/m1/4
1 , (57)
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Figure 9. Stress concentration factor versus elliptic integral parameter.
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where τmax is the largest equivalent shear stress and τ∞ is the applied shear traction at infinity. Being a
power law relationship, it appears as a straight line when plotted on the log-log scale of Figure 9. (Other
authors who have found asymptotic solutions to semiinfinite slot problems with a cycloidal tip for a
mode III loading are cited and discussed in [Unger 2012a; 2012b; 2018]).

A numerical fit to the data points for the uniaxial tensile loading case plotted in Figure 9 using the
Mathematica software has the power law relationship

uniaxial tensile loading: Kt = σ
max
v /T∞ = 1.52/m0.264

1 , (58)

where σmax
v is the maximum value of the normal stress σv in the v-direction. This value also corresponds

to the maximum principal value of stress. The relationship (58) is plotted as a straight line through the
uniaxial tensile data points in Figure 9. Combining (58) with (3) will allow a relationship between aspect
ratio and the stress concentration factor to be generated. This simple power law relationship breaks down
for values of m1 greater than about 0.05. A plot of stress concentration factor versus slot aspect ratio is
provided in Figure 10, which contains points having corresponding values of m1 larger than 0.05. The
value of slot aspect ratio corresponding to m1 = 0.05 is approximately 1.88.

For the biaxial tensile loading, a transition occurs around m1 = 0.00316 for the location of the
maximum principal stress on the curved portion of the slot. For m1 ≤ 0.00316, the largest principal
stress occurs at the slot tip. For m1 > 0.00316, the largest principal stress lies somewhere between the
slot tip and the point where the flat surfaces begin. Figure 3 illustrates this behavior. The location of the
coordinate v on the slot (u = 0) where the flat surfaces meet the rounded portions is

v = cos−1 1−m1/2
1

1+m1/2
1

. (59)

A comparison is now made between the results obtained here for the case of the uniaxial tensile
loaded slot of the type shown in Figure 1 to the work in [Bowie and Freese 1978] for a uniaxial tensile
loaded ovaloid. Recall that the ovaloid is linear slot cut into a plate having semicircular ends. Thus
the geometry of the ovaloid is very similar to the slot geometry addressed in this paper. It should also
provide a qualitative check on the accuracy of the analysis presented here.

uniaxial tensile
loading of slot
(Figure 1)

uniaxial tensile loading of ovaloid
[Bowie and Freese 1978]

AR

Kt

12

10

8

6

4

2

5 10 15 20 25

 

antiplane shear loading of slot (Figure 1), exact solution 

antiplane shear loading of ovaloid
[Savruk et al. 2013]

circular hole limits for ovaloid

Figure 10. Comparison of stress concentration factor versus aspect ratio for two elon-
gated holes.
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The present author [Unger 2016] generated a continuous and smooth curve fit to the data points
generated in [Bowie and Freese 1978] of the form

Kt = 0.850+ 2.13
√

AR. (60)

Note that this expression becomes invalid for values of stress concentration factor lower than a value of
three as the ovaloid degenerates to a circular hole at that particular value.

A similar fit to the data points shown in Figure 9 for the uniaxial tensile loading of the slot together
with a few additional data points covering the low aspect ratio region is

Kt = 0.324+ 2.11
√

0.0783+ AR. (61)

Unlike the ovaloid expression (60), the relationship (61) is valid down to an aspect ratio of zero where
the shape of the slot degenerates to a vertical line that is parallel to the direction of load.

By comparing the two curves representing (60) and (61) in Figure 10, one can infer that the slot shape
of Figure 1 produces lower stress concentration factors Kt than the ovaloid for identical aspect ratios of
the slot. This might be attributed to the fact that the ovaloid has a smaller radius of curvature at the slot
tip than does those of Figure 1 for the same aspect ratio [Unger 2016]. The radius of curvature ρt for the
slot tip corresponding to relationship (4) is given by

ρt = 2a
m1/2

1

1−m1/2
1

. (62)

The radius of curvature at the tip of the ovaloid is naturally determined as half the width of the slot
because its ends are semicircular in shape.

Similarly, a curve fit to numerical data points generated for the antiplane shear loading of the ovaloid
was provided in [Savruk et al. 2013; Savruk and Kazberuk 2017] as

Kt = 1.3442
√

AR +
1

1+ 0.5249
√

AR
. (63)

In Figure 10, this relationship is compared to the exact solution for the slot of Figure 1. The exact formula
is obtained by combining (3) with (57).

One notes from Figure 10 that for both uniaxial tensile loading and antiplane shear loading of the slot
of Figure 1 have lower stress concentration factors than those of the ovaloid for identical aspect ratios.

5. Conclusions

The finite difference solutions for the slot problem addressed in this article produce more reliable values
of stress concentration factor than do the series solutions.

While the slot shape addressed in this paper produces lower stress concentration factors than does the
ovaloid for identical hole aspect ratios, the close proximity of the two curves for each individual case
in Figure 10 suggests that the additional complication of milling the slot tip of the specified shape (4)
is unjustified in most cases. For the antiplane slot problem, relationship (57) remains the only exact
solution of its kind for comparison.
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In closing, the material contained within this article may help experimentalists in the field of fracture
mechanics to better determine the state of stress into which a crack propagates in a specimen.
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