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Abstract: It is shown that the crack driving force for a
fundamental antiplane crack problem is analogous to the
limiting case of the force acting on an ideal fluid on free
streamlines that form at the ends of flow around two par-
allel plates.
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1 Introduction
One of the more difficult concepts for students to compre-
hend in an introductory course on fracture mechanics is
the crack driving force. By employing a simple hydrody-
namic analogy between the free streamline problem for po-
tential flow around two finite-length plates [1, 2] and an
analogous mode III slot problem [3–6], visualization of an
analogous force acting on the free streamlines is possible.
Recovery of the standard crack driving force for a linear
elastic mode III crack problem can be obtained from the
mode III slot solution by allowing the width of the slot to
mathematically approach zero.

In Figure 1a, one finds a schematic drawing of a mode
III slot problem as analyzed previously in [6]. Because of
the symmetry of the problem with respect to the vertical
axis C′B′BC, only the right hand side of the infinite plate is
depicted. Similarly, in Figure 1b, the analogous free stream-
line problem of [1, 2] is depicted.

The slot geometry is designated by the letters
B′A′MAB in Figure 1a. The stationary fluid boundary has
an identical labeling in Figure 1b, and is composed of the
two-dimensional plates A′B′ and AB plus the free stream-
line A′MA.
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In the slot problem a remote antiplane shear traction
is designated in the figure by τ∞; whereas, in the fluid flow
problem the uniform velocity at infinity is labeled v∞.

The slot boundary is traction free along its surface
B′A′MAB. The basic tenets along any free streamline are
that the pressure and speed are constant [2]. A fluid stream-
line follows the path C′B′A′MABC around the plates
where at the ends of the plates a free streamline forms.
Along the free streamline A′MA, a velocity discontinuity
∆v occurs separating the moving fluid from the stationary
fluid.

In cases when themoving fluid is liquid water, the sta-
tionary fluid can be interpreted as water vapor thus defin-
ing a class of problems associatedwith cavitation phenom-
ena [2].

The shape of the end of the slot A′MA and also of the
free streamline are given in Cartesian coordinates (xR , yR)
by the following parametric relationships in θ

xR = −(a/2)
[︀
−(1 − k′) cos θ + k′K(m) − E(m)

]︀
, (1)

yR = (a/2)(1 + k′)
[︂
E
(︂
sin−1

(︂
sin θ
k1

)︂
, k21

)︂
−(1 − k

′)2

(1 + k′)2
F
(︂
sin−1

(︂
sin θ
k1

)︂
, k21

)︂]︃
,

for − π/2 ≤ θ ≤ π/2,

where a is a scaling parameter with units of length. The
specific definitions of the elliptic integrals in (1) are those
adopted in [7].

The various relationships among parameters appear-
ing in the elliptic integrals of (1) are

m = 1 − m1, k′ =
√
m1, k1 =

2
√
k′

1 + k′ , 0 ≤ m1 ≤ 1. (2)

The Cartesian coordinates of two key points A and M,
shown in the figures, are respectively

xA =
a
2

[︃
−√m1K(m) + E(m) +

(1 −
√m1)2

1 +√m1

]︃
, (3)

yA = a
[︀
E(m1) −

(︀
1 −√m1

)︀
K(m1)

]︀
.

xM = a2
[︀
−√m1

(︀
K(m) + 1

)︀
+ E(m) + 1

]︀
, (4)

yM = 0.
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As m1 → 0, both xA and xM → a, and yA → 0. Therefore
a crack problem of crack length 2a can be recovered from
the slot problem as a limiting case as m1 → 0.

Note the Figures 1 were generated with a value of m1
= 0.01 and a = 1.

2 Fluid flow analysis
Let us follow a streamline C′B′A′MABC beginning at the
bottom of Figure 1b where y is at negative infinity. For con-
venience, it is assumed the pressure p∞ there is zero and
the speed has the arbitrary value v∞.

Bernoulli’s equation has the general form along a
streamline

p + 1
2ρv

2 = const, (5)

where ρ (constant) is the density of an incompressible, in-
viscid fluid. Using the values of pressure and velocity at
infinity, one finds that the value of the const in (5) is

const = 1
2ρv

2
∞. (6)

At the start of the free streamline A′ and continuing to A
one finds from (5) and (6) that

pc +
1
2ρc

2 = 1
2ρv

2
∞, (7)

where pc is the pressure of the moving fluid and c is its
speed along the free streamline. Along the interface of the
free streamline and the stationary fluid,Newton’s third law
requires that the pressures be opposite in direction as they
act on this fluid membrane separating the media. There-
fore the pressure of the stationary fluid pc in the cavity
needed to counterbalance the pressure of themoving fluid
is

pc =
1
2ρ

(︁
c2 − v2∞

)︁
. (8)

Now the differential driving force per unit thickness that
(8) induces along the free streamline is

dFD = pc cos α ds (9)

where α is the angle to aunit normal to theboundaryA′MA
as shown in Figure 1a, and ds is the differential arc length
along the free streamline. Geometrically, the following dif-
ferential relationship exists along A′MA

dy = cos α ds. (10)

Consequently by substituting (8) and (10) into (9) onefinds

FD = 1
2ρ

(︁
c2 − v2∞

)︁ yA∫︁
−yA

dy (11)

= ρ
(︁
c2 − v2∞

)︁
yA ,

where yA is given by the second equation in (3). Now by an
analogy found previously in [6]

k′ =
(︁ v∞
c

)︁2
(12)

and using (2), the form of (11) becomes

FD = ρv2∞
(︂

1√m1
− 1

)︂
yA . (13)

For use in comparing the fluid problem to the slot problem,
the distance separating the two surfaces A′B′ and AB will
be small, and correspondingly the value of 1/√m1 will be
large. Under these circumstances, the second term in the
parentheses of (13) may be neglected to yield the approxi-
mation

FD = ρv2∞
yA√m1

. (14)

3 Slot analysis
One of the more interesting features of the slot solution
of [6] is that the equivalent shear stress is constant along
the rounded slot tips. The equivalent shear stress is de-
fined as

τeq =
√︁
τ2xz + τ2yz , (15)

where τxz and τyz are the antiplane shear stresses. By iden-
tifying τeq as the yield strength in pure shear τ0, the von
Mises or Tresca yield condition is satisfied on the rounded
ends of the slot. This characteristic allows the solution to
be interpreted as being associated with either a purely lin-
ear elastic problem or as a linear elastic problem with in-
cipient plastic material at the slot ends.

The crack driving force for linear elastic fracture me-
chanics is often designated by G in honor of A. A. Grif-
fith [8]. For linear elastic fracture mechanics the energy
release rate may be calculated from the J-integral [9]. The
J-integral for the slot problem in this analysis reduces to

J =
yA∫︁

−yA

Wdy, (16)

as there are no tractions along the slot surface. The sym-
bolW in (16) represents the strain energy density. For lin-
ear elastic materials, the J-integral is equal to G and conse-
quently the crack driving force.

Along the slot tip, the strain energy densitymay be cal-
culated from the relationship

W = 1
2G

(︁
τ2xz + τ2yz

)︁
= τ20
2G , (17)
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where G is the shear modulus, and τ0 is the constant state
of equivalent stress along the slot tip. In [6] it was deter-
mined that

τ0 = τ∞/
√
k′ = τ∞/m1/4

1 , (18)

which is the solids counterpart to fluids relationship (12)
for the slot problem.

Therefore, by substituting (17) and (18) into (16), one
obtains

J = τ
2
0
G yA =

τ2∞
G

yA√m1
. (19)

If one compares (19) to (14), the analogy between the two
problems is obvious.

By taking the limit of (19) as m1 → 0 the crack driving
force of the mode III crack problem is recovered

lim
m1→0

J = τ
2
∞πa
2G . (20)

Similarly, the limit of either (13) or its approximation (14)
is

lim
m1→0

FD = ρv
2
∞πa
2 . (21)

Naturally the visual impact of forces acting on a surface
associated with (21) is lost as sides A′B′ and AB approach
one another and the surface A′MA degenerates to a point.

4 Closing
Hopefully, this analysis can serve in the classroom as an
aid to visualizing the crackdriving force throughfluid anal-
ogy.

It should bementioned that the results presented here
are not directly applicable to modes I and II crack prob-
lems as the governing partial differential equation is dif-
ferent from that of the mode III problem. For plane prob-
lems the governing partial differential equation is bihar-
monic. Both mode III crack problems and ideal fluid flow
problems are governed by Laplace’s equation. In addition,
there is no known analogy to the free streamline solution
for the biharmonic equation.

It is also worth noting that the approximate mode I
and mode II slot problem solutions proposed in [3, 4],
for the same slot geometry analyzed here for the mode
III slot problem, have been shown in later years to be in-
valid. However, a good approximation for the stress con-
centration factor of the mode I slot problem of this type
does exist [5]. This approximate stress concentration factor
was verified using the commercial finite element program
Ansysr 14.5, (Ansys, Inc., Canonsburg, PA, USA).

References
[1] Riabouchinsky D., On steady fluid motions with free surfaces,

Proc. Lond. Math. Soc. (2), 1921, 19(1), 206-215.
[2] Milne-Thomson L.M., Theoretical Hydrodynamics, 5th ed., 1996,

Dover, Mineola.
[3] Unger D.J., Linear elastic solutions for slotted plates, J. Elasticity

2012, 108(1), 67-82.
[4] Unger D.J., Erratum to: Linear elastic solutions for slotted plates,

J. Elasticity, 2012, 108(1), 83.
[5] Unger D.J., Linear elastic solutions for slotted plates revisited,

Proceedings 24th Int. Congr. Theor. Appl. Mech., ed. JM Floryan,
ICTAM, Montreal, 2017, 2042-2043.

[6] Unger D.J., Free streamline hydrodynamic analogy for a linear
elastic antiplane slot problem with perfectly plastic ligaments at
its ends, J. Elasticity 2018, 132(2), 261-270.

[7] Abramowitz M., Stegun I.A., Handbook of Mathematical Func-
tions with Formulas, Graphs and Mathematical Tables. National
Bureau of Standards, Series 55, U.S. Printing Oflce, Washington,
DC, 1964.

[8] Hellen K., Introduction to Fracture Mechanics, 1984, 52, McGraw-
Hill, New York.

[9] Rice J.R., A path independent integral and approximate analysis
of strain concentrations by notches and cracks, J. Appl. Mech.,
1968, 35(2), 379-386.



92 | D. J. Unger

v 8

internal pressure pcα

M

A 2-D plate

2-D plate

B

of stationary fluid

p  = 0

8

p  = 0

8

x

y

C

 v 8

slot

B' A'

C'

τ 8

τ 8

A

A'

C

C'

∆v across

free

streamline

A'MA

fluid flow 

stagnation

points B, B'

B'

B

M

plane of

symmetry

        (a)              (b)

Figure 1: a) Mode III slot problem b) Free streamline problem around two plates

Appendix A

Elliptic integrals

The incomplete elliptic integrals of the first and second
kinds that are used in (1) are defined respectively as

F (ϕ,m) =
ϕ∫︁
0

dθ√︀
1 − msin2θ

E (ϕ,m) =
ϕ∫︁
0

√︀
1 − msin2θ dθ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
0 ≤ m ≤ 1. (A1)

For ϕ = π/2 these functions (A1) are called complete ellip-
tic integrals of the first and second kind respectively and

are designated by

F
(︀
π/2,m

)︀
= K (m) , E

(︀
π/2,m

)︀
= E (m) . (A2)

Appendix B

Plotting streamlines

In order to plot the streamlines shown in Figure 1b, one
defines the following complex variable ζ

ζ = ξ + iη, (A3)

where ξ and η are real variables. A particular streamline
is represented in the figure by a constant value of ξ . Simi-
larly, a constant value of η represents an ideal fluid poten-
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Figure 2: Equivalent shear stress magnitude and trajectory lines

tial line, which is orthogonal to the family of streamlines
(potential lines are not shown in Figure 1b).

Next, a complex representation z = x + i y of the phys-
ical plane in Cartesian coordinates (x, y) is defined [3, 4]
as

z = a
{︃
k′ w − E (ϕ,m) (A4)

+ dn (w,m)
1 + k′

[︀
k′sc (w,m) − cs (w,m)

]︀}︃
,

where ϕ is expressed in terms of the Jacobian elliptic am-
plitude [7] as

ϕ = amp(w,m), (A5)

and the function w = w (ζ ) in (A4) and (A5) is given by

w = sc−1
(︁
b
(︁
−ζ +

√︀
ζ 2 + 4d

)︁
,m

)︁
. (A6)

The parameter a of (A4) is the same as in (1). The parame-
ters b and d of (A6) are defined in terms of those previously
defined in (2) by the following relationships

b = 1
2

(︂
1 + 1

k′

)︂
, d = k′

(1 + k′)2
. (A7)

The functions sc and cs in (A4) are Jacobian elliptic
amplitude functions [7] and sc−1 is the inverse function of
sc in (A6).

The Jacobian elliptic amplitude amp (w,m) is defined
as the inverse function of the complete elliptic integral of
the first kind.

Figure 1b was generated using the following limits

0 ≤ ξ ≤ 1, −2 ≤ η ≤ 2, (A8)

with the parameter m1 = 0.01. Note that (A4) was defined
in [3, 4] for the half plane −∞ ≤ x ≤ 0, so that Figure 1b
was actually generated as the reflection of the left-hand
half plane across the y-axis using this relationship.

Appendix C

Equivalent shear stress trajectory lines

An analogy exists between the streamlines shown in Fig-
ure 1b and the equivalent shear stress trajectory lines of
the slot problem.

In Figure 2, the equivalent shear stress trajectory
lines are shown where a Westergaard stress function was
used [3, 4] to determine the equivalent shear stress (15)

ZIII = τ∞nd (w,m) , where (A9)
τxz = Im (ZIII) , τyz = Re (ZIII) .

The function nd in (A9) is the reciprocal of the Jaco-
bian elliptic amplitude function dn. The equivalent shear
stress (15) is everywhere tangent to its trajectory lines. The
equivalent shear stress trajectory lines shown in Figure 2
are identical mathematically to those relationships used
for plotting the streamlines shown in Figure 1b. Along the
slot tip a maximum equivalent shear stress is depicted in
Figure 2 form1 = 0.01. This value is analogous to themaxi-
mum speed c of (12) found along the free streamline in the
fluid flow problem. Both the maximum equivalent shear
stress along the slot tip and themaximum speed along the
free streamlines remain constant along curvesAMA′ of Fig-
ures 1.
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Appendix D

Reduction of slot geometry to crack line

Analternative orthogonal coordinate system to (A4) for the
slot problem was provided in [5, 6] as

z = a2

{︃
−(1 − k′)1 + ζ

2

2ζ (A10)

+ sgn (Reζ )
[︀
k′K (m) − E (m)

]︀
+ i(1 + k′)

[︃
E
(︂
sin−1 ik1

1 − ζ 2
2ζ , k12

)︂

− (1 − k′)2

(1 + k′)2
F
(︂
sin−1 ik1

1 − ζ 2
2ζ , k12

)︂]︃}︃
,

where the various elliptic integral parameters are the same
as in (2) and a is the same scaling factor as in (1).

If one substitutes

ζ = exp (− (u + iv)) , (A11)

into (A10), then elliptical coordinates are obtained as a lim-
iting case as m1 → 0

z = a cosh (u + iv) . (A12)

In (A12) u is a family of confocal ellipses and v is a fam-
ily of hyperbolas orthogonal to the ellipses. The range of
the elliptical coordinates in (A12) are 0 ≤ u ≤ ∞, −π ≤
v ≤ π. The slot for m1 = 0 reduces to the elliptic coordi-
nate u = 0, which represents a slit in the plane spanning
−a ≤ x ≤ a, y = 0. Consequently, points AMA′ in Figure 1a
coalesce to a single point at x = a.
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