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Abstract: An exact linear elastic solution is derived for a
pair of opposing point loads, which act in the middle of a
straight slot having rounded ends. This problem is anal-
ogous to the mode III crack problem where two concen-
trated forces act in opposite directions to open the surfaces
of a finite-length crack. The corresponding path indepen-
dent J integral for this slot problem is also determined.

Keywords: mode III stress function in curvilinear coordi-
nates, elliptical hole, Riabouchinsky free streamline prob-
lem

1 Introduction
Prior to this analysis, no exact solution has been found for
a linear slot with rounded ends subject to two opposing an-
tiplane point loads. Perhaps the closest analogy that one
may find in the literature is for two opposing point loads
acting on the surface of an elliptical hole [1]. However, ex-
perience has shown that for remotely applied shear trac-
tions, large differences exist in stress concentration factors
for solutions of a slot having this particular geometry and
those of an ellipse with identical aspect ratio of slot length
to slot width [2, 3]. This observation suggests that it is ques-
tionable in general to use the solution of an elliptical hole
problem as a close approximation of a solution for a slot.

The shape of the slot analyzed here comes from the
free-streamline problem of an ideal fluid flowing past two
side-by-side flat plates [4] where the flow at infinity is per-
pendicular to the plates. The analogy between this solu-
tion and that of an antiplane slot problem with a uniform
shear loading at infinity was explored in detail in [5, 6].
Further, linear elastic solutions in the plane for remotely
applied tensile loadings of a slot of a similar shape was in-
vestigated in [7, 8] using numerical methods of analysis.
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Figure 1: Slot boundary and loads

The mapping function of the plane exterior to the slot
of Figure 1 onto a unit circle [5–8] has the form

z = ω (ζ ) = a2

{︃
−(1 − k′)1 + ζ

2

2ζ (1)

+ sgn (Reζ )
[︀
k′K (m) − E (m)

]︀
+ i(1 + k′)

[︃
E
(︂
sin−1 ik1

1 − ζ 2
2ζ , k12

)︂

− (1 − k′)2

(1 + k′)2
F
(︂
sin−1 ik1

1 − ζ 2
2ζ , k12

)︂]︃}︃
,

where a is a scaling factor with units of length and z is the
complex variable

z = x + iy. (2)

In (2), the real and imaginary parts of z represent the Carte-
sian plane (x, y). Themapping variable of (1) ζ is expressed
in polar coordinates by

ζ = ρ exp (iθ) , 0 ≤ ρ ≤ 1, −π ≤ θ ≤ π, (3)

where ρ is the radius, and θ is the angle on and within the
unit circle 𝛾. Various relationships among parameters ap-
pearing in the elliptic integrals [9] of (1) are

m = 1 − m1, k′ =
√
m1, k1 =

2
√
k′

1 + k′ , 0 ≤ m1 ≤ 1. (4)

On the unit circle 𝛾, the parameters of (4) are related to the
angle θ by the following relationships

k′ = 1 − cos θ0
1 + cos θ0

, k1 = sin θ0, (5)

where ±θ0 and ±π ∓ θ0 are the four locations on the slot
boundary (ρ = 1) where the flat surfacesmeet the rounded
surfaces. In Figure 1, point Amarks one these locations in
the first quadrant of the xy plane.
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2 Stress analysis in cartesian
coordinates

In the complex plane, aWestergaard stress function [10] is
often used to solve mode III crack problems, which are a
class of antiplane linear elastic problems for isotropic ma-
terials. Accordingly, the Westergaard stress function and
its related functions have the following relationships

τx = ImZIII =
∂φ
∂y = G ∂δ∂x , (6)

τy = ReZIII = −
∂φ
∂x = G ∂δ∂y ,

where τx (x, y) and τy (x, y) are antiplane shear stresses,
φ (x, y) is a real-valued stress function, and δ (x, y) is a
real-valued out-of-plane displacement. In (6), the param-
eter G is the shear modulus, which is assumed constant.
The stresses (6) are the only stresses present in this class
of problems. Similarly, δ (x, y) is the only component of dis-
placement in an antiplane problem, which acts in a direc-
tion perpendicular to the xy plane.

Now equilibrium requires [10]

∂τx
∂x + ∂τy∂y = 0 (7)

which is automatically satisfied by the stress function
φ (x, y). The compatibility equation for strain further re-
quires [10]

∂𝛾x
∂y −

∂𝛾y
∂x = 0, (8)

where 𝛾x and 𝛾y are the engineering shear strains in the
x and y directions respectively. As the shear strains are re-
lated to the displacement as follows

𝛾x =
∂δ
∂x , 𝛾y =

∂δ
∂y , (9)

the compatibility equations (8) are automatically satisfied
by the displacement δ (x, y).

However, Hooke’s law imposes the following addi-
tional relationships between stress and strain

τx = G𝛾x , τy = G𝛾y . (10)

Consequently, by substituting (9) into (10) and the resul-
tant stress field into (7), one determines that δ (x, y) must
also satisfy Laplace’s equation

∂2δ
∂x2 + ∂

2δ
∂y2 = 0 (11)

for equilibrium to be satisfied.
Similarly, by substituting the relationships for the

shear stresses involving partial derivatives of φ from (6)

into (10) to obtain their relationships with strain, one con-
cludes by substituting these strains into (8) that φ must
also satisfy Laplace’s equation in order that the strain com-
patibility equation be satisfied

∂2φ
∂x2 + ∂

2φ
∂y2 = 0. (12)

Therefore, as relationships (6) indicate, φ and Gδ are con-
jugate harmonic functions. Consequently, their relation-
ships are consistent with the general properties of the real
and imaginary parts of a complex function of z [11], which
in this case is the Westergaard stress function.

3 Stress analysis in curvilinear
coordinates

Often, the solution of a problem with complicated bound-
aries can be simplified by the adoption of an appropriate
orthogonal curvilinear coordinate system that accommo-
dates the boundaries naturally. Let us suppose that it is
useful to define such a system as follows

z = f (w) , w = u + iv, (13)

where f is an arbitrary function and u and v are real func-
tions that constitute an orthogonal curvilinear coordinate
system by virtue of the properties of a function of a com-
plex variable [11].

It is the goal here to develop a connection between the
curvilinear coordinate system defined by (13) and the pre-
viously defined functions of (6). Using the chain rule of par-
tial differentiation, one finds that for the stress function φ

∂φ
∂x = ∂φ∂u

∂u
∂x + ∂φ∂v

∂v
∂x , (14)

∂φ
∂y = ∂φ∂u

∂u
∂y + ∂φ∂v

∂v
∂y .

It is nowuseful to interchangewhat are the dependent and
independent variables in the partial derivatives of the co-
ordinates in (14) as follows [12]

∂u
∂x = 1

∆
∂y
∂v ,

∂v
∂x = −1∆

∂y
∂u , (15)

∂u
∂y = −1∆

∂x
∂v ,

∂v
∂y = 1

∆
∂x
∂u ,

where ∆ = ∂x
∂u

∂y
∂v −

∂y
∂u

∂x
∂v .

Certain geometric relationships exist between the an-
tiplane shear stresses in the (u, v) directions respectively
τu and τv and their Cartesian counterparts. By resolution
of the in-plane stress vectors, one finds

τu = τx cos α + τy sin α (16)
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τv = −τx sin α + τy cos α,

where α is the angle between the x axis and the direction
of a unit vector in the u direction.

By substituting (15) into (14) and using the definitions
of τx and τy and in terms of the stress functionφ of (6), one
can derive from these relationships and (16) that

τu (17)

=

(︁
∂x
∂v cos α +

∂y
∂v sin α

)︁
∂φ
∂u −

(︁
∂x
∂u cos α +

∂y
∂u sin α

)︁
∂φ
∂v

∂x
∂v

∂y
∂u −

∂x
∂u

∂y
∂v

,

τv (18)

=

(︁
∂y
∂v cos α −

∂x
∂v sin α

)︁
∂φ
∂u +

(︁
∂x
∂u sin α −

∂y
∂u cos α

)︁
∂φ
∂v

∂x
∂v

∂y
∂u −

∂x
∂u

∂y
∂v

.

At this point it is helpful to introduce themetric coefficient

h =
⃒⃒⃒⃒
dz
dw

⃒⃒⃒⃒
. (19)

Using relationships similar to those derived in [13]

∂x
∂u = h cos α, ∂y

∂u = h sin α, (20)

∂x
∂v = − h sin α, ∂y

∂v = h cos α,

one finds the denominator of relationships (17) and (18) as

∂x
∂v
∂y
∂u −

∂x
∂u

∂y
∂v = −h2. (21)

Upon substitution of (20) and (21) into (17) and (18), there
is a reduction of these expressions to the following simple
forms

τu =
1
h
∂φ
∂v , τv = −

1
h
∂φ
∂u . (22)

Because of (12), the function φmust also satisfy Laplace’s
equation, which in the (u, v) system assumes the form

∂2φ
∂u2 + ∂

2φ
∂v2 = 0. (23)

4 Elliptical hole analysis
In order to gain insight into the slot solution, let us first
explore the solution of the analogous elliptical hole point
load problem, which has a known solution [1]. The map-
ping function of the boundary of an elliptical hole in an
infinite plate onto the surface and interior of a unit circle
has the form [15]

z = ω (ζ ) = R
(︀
Mζ + 1/ζ

)︀
, (24)

where
R = a + b2 , M = a − ba + b . (25)

In (25), a is the semimajor axis and b is the semiminor axis
of the ellipse. The mapping function of the elliptical hole
on the unit circle will have the same form as (3) for the as-
sociated polar coordinates.

Let us now define the following function, which has
logarithmic singularities at ζ = ±i,

φC (ζ ) = Atan−1ζ , (26)

where A is a parameter to be determine from equilibrium
in terms of the point loads P. By differentiation of (26) with
respect to ζ , one finds that the function has 1/r singulari-
ties at ζ = ±i. These properties characterize stresses that
are typically associatedwith point loads in linear elasticity
theory. The derivative of (26) with respect to ζ is explicitly

φ′
C (ζ ) =

A
1 + ζ 2 . (27)

Now assume a Westergaard stress function of the form

ZIII =
dφC
dz , (28)

which has the following alternative representation in
terms of ζ using the chain rule of differential calculus

ZIII (ζ ) =
φ′
C (ζ )

ω′ (ζ )
, (29)

where ω′ (ζ ) is the first derivative of (24) with respect to ζ ,

ω′ (ζ ) = R
(︁
M − 1/ζ 2

)︁
. (30)

Upon substitution of (25), (27), and (30) into (29), theWest-
ergaard stress function becomes

ZIII (ζ ) =
2Aζ 2(︀

1 + ζ 2
)︀ [︀
(a − b) ζ 2 − (a + b)

]︀ . (31)

Now to determine the constant A of (31) one needs to
evaluate the integral appearing in the following expres-
sion

1
2 |P| =

⃒⃒⃒⃒
⃒⃒
∞∫︁
a

τy|y=0 dx|y=0

⃒⃒⃒⃒
⃒⃒ . (32)

This relationship reflects a symmetry requirement that one
half of the magnitude of the load P must be carried along
the positive x axis from the tip of the semimajor axis to in-
finity. In terms of the coordinates defined by (3), the rela-
tionships to the right of the integral sign of (32) are

dx|y=0 =
a
(︀
ρ2 − 1

)︀
− b

(︀
ρ2 + 1

)︀
2ρ2 dρ, (33)
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τy|y=0 =
2Aρ2(︀

ρ2 + 1
)︀ [︀
a
(︀
ρ2 − 1

)︀
− b

(︀
ρ2 + 1

)︀]︀ .
The evaluation of (32) with the substitutions (33) indicate

1
2 |P| =

⃒⃒⃒⃒
⃒⃒A

0∫︁
1

dρ
1 + ρ2

⃒⃒⃒⃒
⃒⃒ → A = ∓2

π P, (34)

where the sign in (34) is determined by the directions of
the loads.

Let us now introduce cylindrical elliptical coordinates
(u, v) in terms of complex variable notation as follows

z = c coshw where w = u + iv, (35)
for 0 ≤ u ≤ ∞, −π ≤ v ≤ π,

where 2c is the distance on the x axis between the foci of
the ellipses. Correspondingly, in the real plane [14] from (2)
and (35)

x = c cosh u cos v, y = c sinh u sin v. (36)

The equation of equilibrium in cylindrical elliptical co-
ordinates for the antiplane problem is derived from amore
general relationship given in [15] as

∂
∂u (hτu) +

∂
∂v (hτv) = 0. (37)

The specific form of themetric coefficient h for (37) is deter-
mined from (19) and (35) to be [14]

h = c
√︂

cosh2u − cos 2v
2 (38)

= c
√︀
sinh2u + sin2v.

Note that relationships (22) automatically satisfy (37); how-
ever, φ must additionally solve Laplace’s equation (23) in
order to ensure the compatibility of strains.

Now by introducing elliptical coordinates into (26),
one finds by taking the real part [9] of (26) that

φ = ReφC (ζ ) = ReφC
(︀
eu0−w

)︀
, (39)

= A2 tan
−1

(︂
cos v

sinh (u − u0)

)︂
,

where u0 is the value of the coordinate u of the elliptical
hole.

By direct substitution, it is easy to verify that (39) sat-
isfies Laplace’s equation (23). It also follows from (36) that

a = c cosh u0, b = c sinh u0. (40)

From (22), (38), and (39), one obtains the solution for
the stresses as

τu = ±
2P
πh

sinh (u − u0) sin v
cosh2 (u − u0) + cos 2v

, (41)

τv = ∓2P
πh

cosh (u − u0) cos v
cosh2 (u − u0) + cos 2v

,

where h in (41) is given by (38). The upper signs of (41) cor-
respond to A = −2P/π, which agree with the loading direc-
tions shown in Figure 1 for the analogous slot problem.

A plot of the stress function φ is shown in Figure 2 for
c = 1, u0 = 0.2, and P = 1. Note that the stress function is
constant along the elliptical hole u0 except for a jump that
occurs at v = ±π/2, where the point loads are applied.

Figure 2: Stress function for elliptical hole

On the elliptical hole u = u0, one determines from (41)
that the boundary condition on traction is satisfied as τu
is everywhere zero except at the locations of the concen-
trated loads, which are singularities. This behavior is de-
picted in Figure 3.

Figure 3: Shear stress for elliptical hole in the u-direction

A local maximum value of the shear stress, away from
the point loads, is consistent with the value determined
previously in [1]⃒⃒⃒

τlocalmax

⃒⃒⃒
= |τv (u0, 0)| =

P
πb , (42)

which occur at the ends of the major axes as shown in Fig-
ure 4. In general, Figure 4 illustrates the behavior of the τv
stress field near the slot.
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Figure 4: Shear stress for elliptical hole in the v-direction

It should be mentioned that cylindrical elliptical coor-
dinates were not employed in the solution presented in [1],
nor were explicit forms of the stresses provided as in (41).

5 Slot analysis
Now that experience has been gained by working through
the simpler elliptical hole problem, the analogous slot so-
lution of Figure 1 will be derived.

By taking the first derivative of (1) with respect to ζ ,
one finds

ω′ (ζ ) = a4
(︀
1 − k′

)︀ 1 − ζ 2
ζ 2 + sgn (Reζ ) (43)

× a
√
k′
ζ

√︃
1 + 1

k21

(︂
1 − ζ 2
2ζ

)︂2

The functions analogous to those of (26)–(29) assume sim-
ilar forms to those given previously for the elliptical hole.
They provide upon substitution of (43) for ω′ (ζ ) in (29) the
following form of the Westergaard function for the slot

ZIII =
2Aζ 2 (1 + cos θ0)

a
(︀
1 + ζ 2

)︀ [︀
cos θ0

(︀
1 − ζ 2

)︀
+ g (ζ )

]︀ , (44)

where

g (ζ ) = sgn (Reζ ) ζ
√︀
ζ 2 − 2 cos 2θ0 + ζ −2.

The relationship between A and P is determined for the
slot problem from equilibrium considerations inmuch the
same way as for the elliptical hole. However, direct inte-
gration of the expressions involved aremuchmore compli-
cated than they were for the elliptical hole. See Appendix
A for details of the evaluation of the integral indirectly. The
result of this integration is identical to the value ofA found
previously for the elliptical hole in terms of the concen-
trated load P for the directions shown in Figure 1,

A = −2Pπ . (45)

Next, a coordinate system resembling cylindrical elliptical
coordinates will be introduced for the slot problem by sub-
stituting for ζ in (1) the following relationship [8]

ζ = − exp (−w) , w = u + iv, (46)
0 ≤ u ≤ ∞, −π ≤ v ≤ π.

Along the slot surface u = 0 in this coordinate system. Now
the real-valued stress function assumes the following form
for the slot problem in these coordinates

φ = −Pπ tan
−1

(︁ cos v
sinh u

)︁
. (47)

The shape of the stress function (47) is shown in Figure 5.
By substituting (46) into (43) the metric coefficient h is de-
termined to be

h =
√
Re

(︀
dz/dw

)︀2 + Im(︀
dz/dw

)︀2, (48)

where

Re
(︀
dz/dw

)︀
= a2

(︀
1 − k′

)︀
sinh u cos v (49)

+ a
√︂
k′
2 sgn

(︀
π/2 − |v|

)︀√︂
a1 +

√︁
a21 + b21

Figure 5: Stress function for the slot
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Im
(︀
dz/dw

)︀
= a2

(︀
1 − k′

)︀
cosh u sin v + sgnb1 (50)

× a
√︂
k′
2 sgn

(︀
π/2 − |v|

)︀√︂
−a1 +

√︁
a21 + b21

with

a1 = 1 + sinh2ucos2v − cosh2usin2v
k21

, (51)

b1 =
2 cosh u sinh u cos v sin v

k21
.

The shear stresses follow from (22) as

τu =
2P
πh

sinh u sin v
cosh2u + cos 2v , (52)

τv = −
2P
πh

cosh u cos v
cosh2u + cos 2v ,

0 ≤ u ≤ ∞, −π ≤ v ≤ π,

where h is given by (48). These stresses are plotted in Fig-
ures 6 and 7 respectively for value ofm1 = 0.01, a = 1, and
P = 1.

The value of a localmaximumof the shear stress, away
from the point loads, is found at the four locations where
the flat surfaces of the slot meet the rounded ends of the
slot along its boundary. This value at point A of Figure 1 is⃒⃒⃒
τlocalmax

⃒⃒⃒
= |τv (0, θ0)| = |τA| =

P
πa m1/4

1

(︂
1 + m1
1 − m1

)︂2
. (53)

At the extreme ends of the slot, as represented by pointM
of Figure 1, the magnitude of the shear stress τv is lower
than that of point A of Figure 1

|τM| =
P

πa m1/4
1

. (54)

The location where the maximum stress occurs in a slot of
this geometry can differ in how the load is applied. For ex-
ample, in the case of uniform tensile loadings at infinity,
the largest principal stress occurs at a point analogous to
point M of Figure 1, provided the direction of the applied
load is perpendicular to the long axis of the slot [8]. Simi-
larly, in the case of uniform biaxial tensile loadings of the
slot at infinity, the maximum value of the principal stress
falls somewhere between pointsM and A of Figure 1 along
the curved portion of the slot depending on the value of
m1.

6 Path independent integral for
slot problem

The path-independent J integral has shown to be a useful
tool in the analysis of crack growth problems. The geome-
try of the slot of Figure 1 can serve as a crack having a finite

Figure 6: Shear stress for the slot in the u-direction

Figure 7: Shear stress for the slot in the v-direction

widthwith rounded tips. The J integral as defined in [16] re-
duces to the following form for this problem

J =
∫︁
Γ

Wdy, (55)

where W is the strain energy density and Γ is the path of
integration. The J integral for this particular slot problem
can be reduced to the evaluation of this integral along a
path limited to the rounded portion of the left hand side of
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the slot. This evaluation will be performed using the coor-
dinate θ of (3). In [5], the angle θwas related to a conformal
mapping of the region exterior to the slot onto the surface
and interior of a unit circle. The positive direction for the
angle θ on the unit circle is in the counterclockwise direc-
tion. In the physical plane, the angle θ = 0 defines a ray
that begins at the origin of the xy coordinate system and
continues along the negative x axis. A point on the surface
of the slot traverses a path in the clockwise direction for a
change of the angle θ in the counterclockwise direction.

The form of W for the antiplane problem addressed
here is

W = 1
2G

(︁
τ2x + τ2y

)︁
= 1
2G

(︁
ReZ2III + ImZ2III

)︁
. (56)

The following expressions are obtained along the surface
of the slot from (44) where ρ of (3) is set equal to one

ReZIII = (57)

P (1 + cos θ0) csc2θ0sec3θ
√︀
cos 2θ − cos 2θ0√

2πa
,

− θ0 ≤ θ ≤ θ0.

ImZIII =
P (1 + cos θ0) cot θ0 csc θ0sec2θ tan θ

πa , (58)

− θ0 ≤ θ ≤ θ0.

With (57) and (58) the form of (56) reduces to

W =
P2cot2

(︀
θ0/2

)︀
sec4θ

2π2a2G , −θ0 ≤ θ ≤ θ0. (59)

Along the rounded portion of the of the left hand slot
tip

y = a
1 + cos θ0

[︃
E
(︁
sin−1

(︀
sin θ/ sin θ0

)︀
, sin2θ0

)︁
(60)

− cos2θ0 F
(︁
sin−1

(︀
sin θ/ sin θ0

)︀
, sin2θ0

)︁]︃
,

for − θ0 ≤ θ ≤ θ0.

Taking the derivative of y of (60) with respect to θ gives

dy
dθ = a (cos 2θ − cos 2θ0) csc θ0

2(1 + cos 2θ0)
√︁
1 −

(︀
sin θ/ sin θ0

)︀2 . (61)

Now, using properties of trigonometric functions, one can
show

cos 2θ − cos 2θ0 (62)

= (1 − cos 2θ0)
[︁
1 −

(︀
sin θ/ sin θ0

)︀2]︁ .

Consequently, when (59), (61), and (62) are substituted
into (55), one obtains after use of some trigonometric iden-
tities

J =
P2 cot

(︀
θ0/2

)︀
2π2aG

θ0∫︁
−θ0

√︁
1 −

(︀
sin θ/ sin θ0

)︀2sec4θdθ. (63)

For the purposes of evaluation, this integral is further sim-
plified by making the following substitutions into it

s = sin θ/ sin θ0 → dθ = sin θ0 ds√︀
1 − sin2θ0 s2

, (64)

to generate

J =
2P2cos2

(︀
θ0/2

)︀
π2aG

1∫︁
0

√
1 − s2 ds

(1 − sin2θ0 s2)
5/2 , (65)

where the factor of two before the integral results from the
symmetry of the integrand and an adjustment of the lim-
its of integration. The integral in (65) is readily evaluated
using the symbolic computer program Mathematicar as

J =
2P2cos2

(︀
θ0/2

)︀
3π2aG

[︃
csc2θ0 K

(︁
sin2θ0

)︁
(66)

− 4 cot (2θ0) csc (2θ0) E
(︁
sin2θ0

)︁]︃
.

The limit of J as θ0 → 0 corresponds to the value of amode
III crack subject to a pair of antiplane splitting forces ap-
plied at the middle of the crack

J0 = lim
θ0→0

J = P2
2πaG . (67)

This is consistent with the value determined by substitut-
ing the stress intensity factor KIII for a pair of opposed
point loads P applied at themiddle of a line crack of length
2a [17], i.e.,

KIII =
P√
πa

, (68)

into a general relationship for the J integral [18] for mode
III crack problems

JIII =
K2III
2G (69)

The range of J/J0 varies monotonically from a value of
one for θ0 = 0 to infinity for θ0 = π/2.

7 Closing
A prototype problem for the loading of a slot by forces
applied near the center of its internal boundary was pro-
posed and solved in this article The singularities that ap-
pear at the points of application of the concentrated loads
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were anticipated and consequently they are not particu-
larly noteworthy. However, of considerable interest is how
this symmetrical loadingnear the center of a slot generates
states of stress at other locations along the slot boundary.
For example, it was not known beforehand if the applied
loads would generate larger states of stress at points A or
M of Figure 1.

One notes that the linear elastic point load prob-
lem presented here is only the second analytical solution
known for a slot with rounded ends. The first [2, 3, 5, 6]
was found by analogy with the free streamline problem of
Riabouchinsky [4]. That particular slot solution assumes a
load of uniform antiplane shear tractions at infinity rather
than point loads applied along its interior boundary. In
both cases, however, one finds large stresses that are pro-
portional to 1/m1/4

1 at the slot tips. Consequently, as the ge-
ometry of the slot approaches that of a line crack (m1 → 0),
the stresses at the tips become singular in a similar mathe-
matical fashion withm1 for the two different types of load-
ing.

Further, the J integral for the slot was found here in
a straightforward manner that is impossible to duplicate
with the analogous loading of an elliptical hole. If one
attempts to calculate the J integral along the periphery
of an elliptical hole, one encounters a divergent integral
because of the presence of the singularities generated by
the point loads. This issue is not encountered in the slot
problem because the path of integration is limited to the
rounded portions of the slot. Along the flat surfaces of the
slot, where the point loads are applied, dy is zero, which
negates the effect of the singularities on the convergence
of the integral. In a similar light, the calculation of the J
integral for the line crack cannot be determined by follow-
ing a path along the surfaces of the crack as dy equals zero
along them and there is no smooth curve connecting the
surfaces. Nevertheless, onemaydetermine the value of the
J integral for the line crack (67) subject to opposing point
loads from the solution for the slot (66). One simply allows
the parameter m1 to approach zero, which causes the flat
surfaces of the slot to converge to a line crack of length 2a
with zero width.
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Appendix A

Evaluation of parameter A

In this appendix, the parameter A of (27) will be evaluated
from equilibrium considerations for the slot problem.

One notes the following differential relationship
from (1) and (29)

ZIIIdz =
φ′
C (ζ )

ω′ (ζ )
ω′ (ζ ) dζ . (A1)

Upon integrating both sides of (A1), one finds between
limits of integration

z2∫︁
z1

ZIII(z)dz =
ζ2∫︁
ζ1

φ′
C (ζ )dζ = φC (ζ2) − φC (ζ1) . (A2)

By substituting the following expressions into (A2) and ex-
panding

ZIII = ReZIII + iImZIII , (A3)
dz = dx + idy,

one obtains
z2∫︁
z1

ZIII(z)dz =
x2∫︁
x1

ReZIIIdx −
y2∫︁
y1

ImZIIIdy (A4)

+ i
y2∫︁
y1

ReZIIIdy + i
x2∫︁
x1

ImZIIIdx

Now restricting attention to the positive x axis, onemay set
both dy = 0 and ImZIII equal to zero in (A4). The latter is
valid because it is equal to τx, which produces no traction
along the x axis in the y direction. What remains of (A4)
reflects the load that must be carried along the right hand
side of the plane. For the direction of loading shown in Fig-
ure 1, one has

x2∫︁
x1

ReZIIIdx =
∞∫︁

xM

τydx = −
P
2 . (A5)

Further, the right hand side of (A2) becomes by substi-
tuting φC from (26) into it

φC (ζ2) − φC (ζ1) = Atan−1ζ2 − Atan−1ζ1, (A6)

Now, for the right hand side of (A6), a change of variables
is introduced using (46)

Atan−1 exp (−w1) − Atan−1 exp (−w2) . (A7)

The complex variablesw1 andw2 found in (A7) are defined
in terms of the real-valued coordinates (u, v) by

w1 = u1 + iv1, w2 = u2 + iv2, (A8)

By substituting w1 and w2 from (A8) into (A7) and evaluat-
ing the expression using the following limits of integration
along the positive x axis

u1 = 0, u2 →∞, v1 = v2 = 0, (A9)

one obtains

Atan−11 − A lim
u2→∞

tan−1e−u2 = A π/4. (A10)

Consequently, equating the right hand side of (A5) to the
right hand side of (A10) quantifies the value of A in terms
of P as

−P2 = Aπ4 → A = −2Pπ . (A11)
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