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Elliptic curve terminology comes from the close association with elliptic functions, and not because of any physical 
resemblance to an ellipse. The curves investigated here represent various yield loci in the plane having cubic algebraic 
relationships between the second and third invariants of the deviatoric stress tensor.  A well-known yield condition 
attributed to Drucker falls into this classification.  In addition, the more commonly used Tresca yield condition 
represents a limiting case of elliptic curves.  All yield criteria based on elliptic curves, including the Tresca, can be 
parameterized in terms of the Weierstrass elliptic℘-function.  The properties of elliptic curves as they pertain to the 
formulation of various plastic yield criteria of materials are the topic of this investigation.  Various perfectly plastic 
solutions of mode I crack problems are discussed. 
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1. Introduction 

Elliptic curves are generated from cubic algebraic equations of a specific form that have special group properties, 
Solovyov (1999).  Because of these special characteristics, they have been important historically in the field of number 
theory, Knapp (1992), McKean and Moll (1999), and are believed to be key in solving the Birch and Swinnerton-Dyer 
Conjecture, Ash and Gross (2012), Stewart (2013).  Proof of this particular conjecture is considered one of the 
outstanding problems in all of mathematics, Devlin (2002).  Furthermore, elliptic curves have found application in the  
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field of cryptography, Washington (2003), and through their connection with modular forms were instrumental in the 
solution of Fermat's Last Theorem, Devlin (2002).  Being the simplest class of algebraic curves beyond conics and 
lines, Kendig (2011), they can also be found in many other areas of science and engineering.  For example, it will be 
shown here that two commonly used material yield criteria, the Tresca, see Chakrabarty (1987), and the Drucker 
(1949, 1962), can be reduced to Weierstrass form, a class of functions to which elliptic curves belong, Knapp (1992).  
This form generates elliptic curves as well as related cubic curves, which are not considered elliptic due to the presence 
of singularities, Washington (2003).  For example, the semicubical parabola, while having an equation of Weierstrass 
form, is not considered elliptic as it exhibits a cusp.  Similarly, the alpha curve, Kendig (2011), which is also generated 
by an equation of Weierstrass form, is not considered elliptic, because of the appearance of a node.  The Tresca yield 
condition has a similar shape to the alpha curve when expressed in terms of its 2 3( , )J J  invariants of the deviatoric 
stress tensor in Weierstrass form (X, Y).  However, a slight perturbation of the Tresca yield condition will generate a 
yield locus that is a true elliptic curve.  The yield condition of Drucker is also an elliptic curve when expressed in 
terms of the same deviatoric invariants 2 3( , )J J  in Weierstrass form (X, Y).  The only other class of singularity found 
in cubic equations besides nodes and cusps are isolated points, Bix (2006). 

Note that yield criteria that have hydrostatic stress dependence, such as the Mohr-Coulomb or Drucker-Prager, 
see Chen and Zhang (1991), are not addressed here as they cannot be expressed in terms of 2 3( , )J J alone. 
   A form of cubic equation, which admits several different yield conditions as special cases, has the representation 
 
 
 3 2 2 3 2 2 2

3 2 2 2( / ) ( / ) ( / ) / ,J k J k J k J kα β γ δ= + + +  (1) 
 
where 2J  and 3J  are the second and third invariants of the deviatoric stress tensor, Chakrabarty (1987), where the 
Greek symbols represent constants, and where k is the yield strength in pure shear.  In this analysis, the deviatoric 
stress invariants will be restricted to those cases where the third principal stress 3σ  is zero, as for plane stress 
problems. It follows that   
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where 1σ  and 2σ  are the first and second principal stresses respectively.  The Weierstrass form of (1) is expressible 
in terms of Cartesian coordinates (X, Y) through the following substitutions 
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Table 1. Cubic equations and their relationships to yield criteria through deviatoric stress invariants. 
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In Table 1, one finds four different yield conditions representable in the form of (4), plus the von Mises yield 

condition, Chakrabarty (1987), for comparison.  The yield criteria tabulated as E1 and E2 are elliptic curves whose 
properties are investigated by the author. Their priority remains unknown to the author, but because of their simplicity, 
the author assumes none.  In Table 1, the symbol 0σ  represents the yield strength in tension. 

In Fig. 1 (a), the various yield conditions presented in Table 1 are plotted in the XY plane.  In Fig. 1 (b), the 
 

 

                  Fig.  1.  (a)  various yield conditions in the XY plane; (b) yield conditions in the normalized principal stress plane. 
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corresponding yield criteria are plotted in the normalized principal stress plane.  Note that the von Mises yield 
condition and yield condition E2 are nearly indistinguishable when plotted in the principal stress plane.  Similarly, the 
Drucker yield condition and yield condition E1 are also very close to one another in this plane. 
 

2.  Parameterization of Weierstrass form 

One interesting feature of yield conditions of the form (1) is that they are expressible parametrically in terms of the 
Weierstrass ℘-functions.  This is evident by examining the following ordinary differential equation associated with 
this function, Ambramowitz and Stegun (1964), 
 

 ( ) ( ) ( )2 3
2 34 ,u u g u g′℘ = ℘ − ℘ −     (7) 

 
where the prime on ( )u℘  designates differentiation with respect to the independent variable u, which serves as a 
parameter.  The Weierstrass function, its first derivative, and the relationships that X and Y assume with respect to this 
function’s invariants ( )2 3,g g  are 
 
 ( ) ( ) 2 1 3 2, 2 , 4 , 4 ,u X u Y g c g c′℘ = ℘ = = − = −  (8) 
 
where the constants 1c  and 2c , defined previously in (6), are provided for individual yield conditions in Table 2. 
 
 
Table 2.   Coefficients of the various yield conditions as they relate to Weierstrass form. 
 
Yield Condition α   β   γ   δ   1c   2c   
Tresca 4/27 -4/3 32/9 -64/27 -3 2 
Drucker 4/9 0 0 -4/9 0 -1 
E1 1 -6 11 -6 -1 0 
E2 1 -9 26 -18 -1 6 
von Mises, X = 1 N/A  N/A N/A N/A N/A N/A 

  
 

Note that the Weierstrass ℘-function is reducible to alternative forms in specific cases, Ambramowitz and 
Stegun (1964), Gradshteyn and Ryzhik (1980).  For example, for the various yield conditions based on cubic equations 
presented in Tables 1 and 2, one finds 
 

 ( ) ( )2Tresca: 3coth 3 2,u u℘ = −   (9) 
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2E1: 1,
sn 2 ,1/ 2
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℘ = −   (11) 
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In (10)-(12), the function cn and sn are Jacobian elliptic functions as defined in Ambramowitz and Stegun (1964). 
 

3.  Tresca yield condition and its generalization 

In solving the fundamental mode I crack problem for the Drucker perfectly plastic yield condition, Unger (2008, 2009) 
defined the following stress function ( ),rφ θ for use in polar coordinates ( ),r θ   
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where θσ  and rσ  are normal stresses, rθτ  is the shear stress, and the primes denote differentiation with respect to 

.θ    For a plane stress problem, involving the Tresca yield condition, the yield condition assumes the following form 
in terms of the stress function f and its derivatives 
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The general solution of the nonlinear ordinary differential equation defined in (14) follows 
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where ( )1, ... ,6iC i =  are constants to be determined from boundary conditions on traction. 

The phase plane of this solution (15) is depicted in Fig. 2 (a), where each specific form of f in (15) generates a 
family of ellipses upon variation of the parameters with the odd-valued subscripts between the limits indicated.  By 
inspection of Fig. 2 (a), candidates for singular solutions of (14) also exist at ,p k= ±  because singular solutions 
correspond to envelopes of the general solution loci in the phase plane.  Note that singular solutions cannot be obtained 
from the general solution by simply selecting particular values of the arbitrary constants.  Upon integration of

,p k= ± one finds 
 

 7 , where / 1/ 2.f k C f kθ= ± + ≤   (16) 
 
By direct substitution of (16) into (14), it is verified that they constitute singular solutions of (14). 

An extension of the Tresca yield condition is now derived from the Weierstrass form provided in Table 1 by 
simply appending a constant ε  to its end, i.e., 
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where a solution of a cubic algebraic equation was used to obtain (19) from (18), Weisstein (2002).  Utilizing (19), 
one obtains the generalized Tresca yield condition in terms of principal stresses as 
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Note that in the limit as 16ε →  the von Mises yield condition is recovered from (20) for plane stress loading 
conditions.  Thus, a continuous transformation occurs ( )0 16ε≤ ≤  from the Tresca to von Mises yield conditions. 
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In (10)-(12), the function cn and sn are Jacobian elliptic functions as defined in Ambramowitz and Stegun (1964). 
 

3.  Tresca yield condition and its generalization 

In solving the fundamental mode I crack problem for the Drucker perfectly plastic yield condition, Unger (2008, 2009) 
defined the following stress function ( ),rφ θ for use in polar coordinates ( ),r θ   
 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

2, , ,

2 , , 2 2 ,r r

r r f p f
dpf f p f f p f
dfθ θ

φ θ θ θ

σ θ τ θ σ θ θ

′= =

′ ′′= = − = − = + = +
  (13) 

 
where θσ  and rσ  are normal stresses, rθτ  is the shear stress, and the primes denote differentiation with respect to 
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Singular solutions are often employed in the solution of mode I crack problems for perfectly plastic materials. 
In Unger (2008, 2009), two different plane stress, perfectly plastic solutions were explored for the governing 
differential equations in the phase plane.  One was for the von Mises yield condition, whose solution was first obtained 
by Hutchinson (1968), and the other was for the Drucker yield condition.  Singular solutions occupy the leading sector 
ahead of the crack tip in both these solutions.  One notes how the loci of the general solution for the Tresca and its 
generalization differ dramatically regarding the formation of envelopes.  At present, no completely satisfactory mode 
I crack solution for a perfectly plastic material has been found for the traditional Tresca yield condition under plane 
stress loading conditions, although an effort was made toward this goal in Unger (2005).  In contrast, it is entirely 
possible that one exists for the generalized Tresca yield condition, as its envelope for ε  equals one resembles that of 
the Drucker yield condition for which a suitable analytical solution exists.  This is a topic for future study and analysis.  
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