

Machine Learning Camera

Christian Olson

Abstract

There are many tasks for which machines are unsuited due to their inability to think creatively and to recognize approximate patterns. However, using Machine Learning techniques and a certain level of image processing we can teach a machine to recognize images as well as a human can.

Image Processing Program

- Noise reduction
- Edge detection
- Vectorization

Machine Learning Program

- Sample Set
 - A sample set containing several thousand vectors and values is given to the Machine Learning Algorithm.
- K-Nearest Neighbors
 - The K-Nearest Neighbors Algorithm gives an answer based on the sample set.

How it Works

- The camera takes a picture which is given to the Image Processing Program to be processed and turned into a vector which can be used to represent the image as a point in several dimensional space.
- The Machine Learning Program searches through a sample set of premade and labeled vectors and finds the K elements which are closest to the input vector in several thousand dimensional space. It compares them and gives an answer based on what those sample set entries are.
- The user then has the option to tell the machine if it was correct, adding more accuracy to future runs by increasing the size of the sample set

Hardware

- Raspberry Pi 3 Model B+
- Logitech USB Webcam

Trinity Firefighting Robot

- Identifies target patterns
 - Finds a cradle
 - Finds a safe exit
- Designed to integrate into larger robot

Target patterns for the machine learning camera

Implementations of Computer Vision

- Self-driving cars
- Automatic image sorting
- Facial recognition
- Medical imaging
- Agricultural and industrial monitoring