COSMIC Semantic Segmentation Framework

(Content-based Object Summarization to Monitor Infrequent Change)
CL #18-4652

Asher Trockman (Computer Science ’19)
Advisor: Dr. Don Roberts (University of Evansville)
Sponsor: Dr. Lukas Mandrake (Jet Propulsion Laboratory, Caltech)

Long-term Problem: Deep space missions such as the Mars Reconnaissance Orbiter collect more data than can be sent back to Earth due to limited communications bandwidth.

Long-term Solution: Machine learning algorithms can be deployed on board orbiters to prioritize the downlink of scientifically interesting images to Earth, making better use of limited communications bandwidth.

Given a dataset of interesting images, like impact craters:

...And semantic labels for those images:

...We can train models to identify new, unseen, valuable images.

Immediate Problem: However, basic machine learning research is necessary to boost real-world performance on identifying these images, and numerous neural network architectures must be evaluated in terms of accuracy and compute requirements, which involves software development challenges.

Immediate Solution: A framework is designed to reduce redundant development, to standardize the algorithm testing process, and to allow developers to focus on the implementation details of novel machine learning algorithms.

2) Using subsets of the Dataset of LabeledImages for training and testing...

3) We can Evaluate models consistently after a standardized Curriculum.

4) And Log the results in an easily-comparable format.

from cosmic import *
1. Easily modify or extend models
class VggNet19_Dice(Vgg19Model):
 name = 'VGG19/dice'
 def loss(self, x, y):
 yhat = self.heatmap(x)
 return dice_loss(y, yhat)

2. Test them in one line
Evaluator(VggNet19_Dice(), Dataset({'./fresh_impacts'}))

...many hours of computing
3. See results in ./VGG19/dice

Conclusion: The framework designed and the utility modules included will help researchers to efficiently test and compare new machine learning models with a torrent of newly-labeled data of the Martian surface.